
Using Agile on Package

Implementations

About this deck

• This deck is meant to be a sample set of slides to explain to business people who aren’t typically
familiar with project, product, or software lifecycles.

• There are 2 primary slides that are always needed: How a traditional implementation works, and how
an Agile implementation works.

• Those slides are necessary but not sufficient for any given organization. Some may need more
upfront context, some may need some specifics after. Thoughts on that content is provided but need
to be fleshed out for your particular company and culture.

Setting the stage

• Put up front context here if needed. Items like “Why are we explaining this”, “Why is <your
company> trying Agile”, etc

Waterfall (traditional) life cycle for package implementations

Gather all

requirements

(roles,

interfaces,

processes,

data)

Design all

components

(roles,

interfaces,

processes,

data)

Configure /

Develop

(roles,

interfaces,

processes,

data)

Test

(roles,

interfaces,

processes,

data)

Deploy

Defect/Change Request

VERY HIGH

BUSINESS

INVOLVEMENT

• Relies on lengthy paper documents for the initial stages and
confirm details before moving on.

• Business resource usage fluctuates between very high in
beginning and end and very limited in the middle.

• High chance of not realizing requirements were misinterpreted
until testing, months later. Problems found may require
reverting to develop or design stage based on severity.

• Significant organizational time to classify issues into defect or
change requests

Data

Business Processes

External interfaces

User roles & security

Agile lifecycle for package implementations

Data

Business Processes

External interfaces

User roles & security

Analyze

roles

Analyze

interfaces

Analyze

processes

Design/

Configure /

Test: Dept 1

Design/

Configure /

Test: Dept 2

Design/

Configure /

Test: Dept N

…

Analyze

data

Design/

Configure /

Test: Area 1

Design/

Configure /

Test: Area 2

Design/

Configure /

Test: Area N

… Deploy

Design/

Configure /

Test: Dept 1

Design/

Configure /

Test: Dept 2

Design/

Configure /

Test: Dept N

…

Design/

Develop/ Test:

Interface 1

Design/

Develop/ Test:

Interface 2

Design/

Develop/ Test:

Interface N

…

• Leverage the completeness of a vendor solution to skip
paper and configure requirements in a working system.

• Time saved on writing and reviewing paper and the
defect/change request process can be spent on user
feedback and vendor modifications.

• Medium, consistent business involvement throughout
project to ensure alignment with business needs.

• Easier to break up into multiple teams for parallel work and
faster throughput.

• Vendor data used as a proxy until company data has been
migrated.

CONSISTENT BUSINESS INVOLVEMENT

Your role in making <initiative> successful

Some company cultures work better when individuals have specific guidance on how they can help. Here
are some example thoughts using far too many words. Trim based on what would resonate with your
culture, and expand where needed:

• <Initiative> will deliver working code instead of paper. The first iteration may have material
shortcomings. That’s okay, understanding what you like and dislike is important. Provide feedback
quickly, so <vendor> can modify and return.

• Providing initial and high level feedback in 1 day is better than performing a detailed look and
providing feedback after 1 week. The more iterations we can deliver, the better the solution will fit
our needs.

• (If the vendor has provided you with a demo environment with sample data) Go learn the vanilla
<package name> so you understand the system basics such as navigation, terminology, and look &
feel. Then when we get our configured system you’re familiar with foundational concepts.

